
 

 

STATISTICS IN TRANSITION new series, Special Issue, August 2020 
Vol. 21, No. 4, pp. 35–39, DOI 10.21307/stattrans-2020-025 
Received – 31.01.2020; accepted – 30.06.2020 

Discussion of “Small area estimation: its evolution  
in five decades”, by Malay Ghosh 

Yan Li1 

Prof. Ghosh leads us step gradually into the realm of small area estimation (SAE) 
through the evolution of SAE for the past five decades, introducing various SAE 
methods of synthetic estimators, composite estimators, and model-based estimators for 
small area parameters, mean squared error approximations, adjustment methods of 
benchmarking and transformation, etc. The paper broadens and deepens our 
understanding of different perspectives of the SAE and provides a few illustrative real-
life applications.  It is a great review paper for general audience, especially for our 
graduate students in survey statistics and related areas, who wish to have a snapshot of 
the SAE research.   

Prof. Ghosh focuses his review on the inferential aspects of the two celebrated small 
area models ----- the Fay-Herriot (FH) area model and the unit level nested error 
regression (NER) model. In the implementation of these models, variable selection 
plays a vital role and my discussion centers around this topic, which complements 
Professor Ghosh’s paper.  

There is a vast literature on variable selection, a subtopic of model selection. We 
refer to the Institute of Mathematical Statistics Monograph edited by Lahiri (2001) for 
different approaches and issues in model selection and the book by Jiang and Nguyen 
(2015) for model selection methodology especially designed for mixed models.  
Variable selection methods for general linear mixed model can be, of course, applied to 
select variables for the FH and NER models as they are special cases of the general linear 
mixed model. Many data analysts not familiar with mixed models, however, use 
software meant for linear regression models to select variables. This approach may 
result in loss of efficiency in variable selection. Lahiri and Suntornchost (2015) and Li 
and Lahiri (2019) proposed simple adjustment methods so that the data users can select 
reasonable models by calculating their favorite variable selection criteria, such as AIC, 
BIC, Mallow’s Cp, and adjusted R2, which are developed for standard linear regression 
model assuming independent identically distributed (iid) errors.  The goal of the two 
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papers is to propose adjustment methods, instead of advocating a specific variable 
selection method.  Cai et al. (2020), with the same goal, creatively combined the two 
variable selection methods (Lahiri and Suntornchost, 2015 and Li and Lahiri, 2019) and 
proposed a variable selection method for another popular two-fold subarea model.  

The above-mentioned three methods consider commonly used variable selection 
criteria under a standard regression model with iid errors, including 
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Note that 𝑦 ൌ ሺ𝑦ଵ, … , 𝑦௡ሻ is a vector of observations on the dependent variable; 𝑋௞ 

is a 𝑛 ൈ ሺ1 ൅ 𝑘ሻ design matrix with columns of one’s and k auxiliary variables, 
corresponding to the intercept and k unknown parameters; 𝑆𝑆𝐸௞(𝑀𝑆𝐸௞) is the SSE 
(MSE) based on the standard regression model for 𝑘 ൌ 1, … , 𝐾.  Here K is the total 
number of auxiliary variables considered in model selection and n is the sample size. 
When 𝑘 ൌ 𝐾, 𝑀𝑆𝐸௄ ൌ

ௌௌா಼

௡ି௄
 is the MSE based on the full model with all K auxiliary 

variables. As noted, these variable selection criteria can be expressed as a smooth 
function of 𝑀𝑆𝐸௞ and 𝑀𝑆𝑇. 

Next, adjustments proposed for the three small area models are briefly discussed 
before above variable selection criteria designed for standard regression model can be 
used.  
 
1. Consider the Fay-Herriot area model given by: 

𝑦௜ ൌ 𝜃௜ ൅ 𝑒௜  and 𝜃௜ ൌ 𝑥௜
்𝛽 ൅ 𝑣௜,                                          ሺ1ሻ 

where 𝜃௜  is the unobserved true mean for small area i; 𝑦௜ is the survey-weighted estimate 
of 𝜃௜ ; 𝑣௜is the random effect for small area i; 𝑣௜ ’s and 𝑒௜’s are independent with 
𝑣௜~𝑁ሺ0, 𝐴ሻ and 𝑒௜~𝑁ሺ0, 𝐷௜ሻ 𝑖 ൌ 1, … , 𝑚.   Let 𝜖௜ ൌ 𝑣௜ ൅ 𝑒௜, and its variance is 𝐴 ൅ 𝐷௜. 
The vector 𝛽 ൌ ሺ𝛽଴, 𝛽ଵ, … , 𝛽௞ሻ் is a vector of length k+1 of unknown parameters. 
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Lahiri and Suntornchost (2015) proposed a simple adjustment to the standard 
variable selection methods by replacing 𝑀𝑆𝐸௞ and 𝑀𝑆𝑇 in above variable selection 
criteria by 

𝑀𝑆𝐸෣௞ ൌ 𝑀𝑆𝐸௞ െ 𝐷ഥ௪ 
and  
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௠
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variable selection criteria track the corresponding true variable selection criteria much 
better than naïve methods. Lahiri and Suntornchost (2015) also proposed 
a transformation method and a truncation method to prevent negative values of 𝑀𝑆𝐸෣௞ 
and 𝑀𝑆𝑇෣ . As noted, the Lahiri-Suntornchost method can be implemented using two 
simple steps: 1) adjusting 𝑀𝑆𝐸௞ and MST, and 2) computing the variable selection 
criteria of users’ choice under the standard regression model with adjusted 𝑀𝑆𝐸෣௞ and 
𝑀𝑆𝑇෣ .   
 
2. Consider a unit level nested error regression model given by: 

𝑦௜௝ ൌ 𝑥௜௝
் 𝛽 ൅ 𝑣௜ ൅ 𝑒௜௝                                               ሺ2ሻ 

for unit 𝑗 ൌ 1, … , 𝑛௜ in area 𝑖 ൌ 1, … , 𝑚, where 𝑛௜  is the sample size for small area i and 
the total sample size 𝑛 ൌ ∑ 𝑛௜

௠
௜ୀଵ . In Model (2), we assume the area effect 𝑣௜  ~ iid 

𝑁ሺ0, 𝜎௩
ଶሻ is independent of 𝑒௜௝ ~ iid 𝑁ሺ0, 𝜎௘
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ଶ. The outcome 
in unit j of area i is denoted by 𝑦௜௝, and 𝑥௜௝ ൌ ൫1, 𝑥௜௝ଵ, 𝑥௜௝ଶ, … , 𝑥௜௝௞൯ is a vector of length 
k+1 with the values of the covariates 𝑥ଵ, 𝑥ଶ, … 𝑥௞ for unit j in area i. In order to make 
the observations independent and at the same time to avoid the estimation of the intra-
cluster correlation, Li and Lahiri (2019) specified 𝑃௜ to be an (𝑛௜ െ 1ሻ ൈ 𝑛௜ matrix such 

that ൭𝑛௜

ିభ
మ1௡೔

்

𝑃௜

൱ is orthogonal for 𝑖 ൌ 1,2, … , 𝑚, and transformed the data by 

𝑦௜
௅௅ ൌ 𝑃௜𝑦௜, 

 𝑥௜
௅௅ ൌ 𝑃௜𝑥௜, and 
 𝑢௜

௅௅ ൌ 𝑃௜𝑢௜. 
 

The transformed model can then be written as: 

𝑦௜
௅௅ ൌ 𝑥௜

௅௅𝛽 ൅ 𝑢௜
௅௅ for 𝑖 ൌ 1, 2, … , 𝑚,                                     ሺ3ሻ 

where the vector of the error term in area i follows 𝑢௜
௅௅~𝑁ሺ0, 𝜎ଶሺ1 െ 𝜌ሻ𝐼௡೔ିଵሻ with  

𝐼௡೔ିଵ a ሺ𝑛௜ െ 1ሻ ൈ ሺ𝑛௜ െ 1ሻ identity matrix.  The 𝑀𝑆𝐸௞ and 𝑀𝑆𝑇 estimated from 
Model (3) can then be plugged into the various variable selection criteria, from which 
users can pick their favorite to select model variables. Same as the Lahiri-Suntornchost 
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method, the Li-Lahiri (LL) method is implemented with two steps, but with a different 
first step: estimating 𝑀𝑆𝐸௞ and MST by fitting the LL-transformed data to Model (3): 
a standard regression model with iid error.  
 
3. Consider two-fold subarea model given by:  

𝑦௜௝ ൌ 𝜃௜௝ ൅ 𝑒௜௝ and 𝜃௜௝ ൌ 𝑥௜௝
் 𝛽 ൅ 𝑣௜ ൅ 𝛾௜௝.                            ሺ4ሻ 

Compared to the unit-level nested error regression model (2), an additional error 
term 𝛾௜௝~iid 𝑁൫0, 𝜎ఊ

ଶ൯ is assumed and independent of 𝑣௜  or 𝑒௜௝.  Cai et al. (2020) first 
employed the LL data transformation to construct a new linking model for 𝜃௜௝, given 
by  

𝜃௜
௅௅ ൌ 𝑥௜

௅௅𝛽 ൅ 𝑢௜
௅௅,                                                      ሺ5ሻ 

which is similar to Model (3) but with unobserved response 𝜃௜
௅௅.  The Lahiri-

Suntornchost method are then employed to adjust the 𝑀𝑆𝐸௞ and 𝑀𝑆𝑇 in estimating 
the information criteria under Model (5) with 𝑀𝑆𝐸௞ and MST estimated by replacing 
the unobserved response 𝜃௜

௅௅ by 𝑦௜
௅௅, the LL-transformed observed response. 

All the three papers aim at making simple adjustments to the regression packages 
available to data users, and their objective is not to decide on the best possible regression 
model selection criterion, but to suggest ways to adjust the 𝑀𝑆𝐸௞ and MST before 
employing a data user’s favorite model selection criterion. Given the conceptual and 
computational simplicity of the methods and wide availability of software packages for 
the standard regression model, these adjustments are likely to be adopted by users. 
To carry out variable selection under an assumed model (Fay-Herriot area model, 
nested error regression model, or two-fold subarea model), users can choose one of the 
above information criteria and estimate its values for a set of submodels under 
consideration with adjusted MSE and MST. The submodel with the smallest estimated 
information criterion value is selected as the final model. 

Prof. Ghosh discussed various inferential aspects, including MSE approximations, 
under the FH and NER models, assuming the underlying model is true.  In practice, 
variable selection is often conducted to select the optimal model so that inferential 
accuracy can be improved conditional on the selected model.  An important follow-up 
question is how we can incorporate this additional uncertainty introduced by model 
selection into the MSE approximation at the inferential stage.    
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